
Deep Reinforcement Learning for Single-Shot Diagnosis and Adaptation
in Damaged Robots

Shresth Verma1, Haritha Nair2, Gaurav Agarwal3, Joydip Dhar4 and Anupam Shukla5

Abstract— Robotics has proved to be an indispensable tool in
many industrial as well as social applications such as warehouse
automation, manufacturing, disaster robotics, etc. In most of
these scenarios, damage to the agent while accomplishing
mission-critical tasks can result in failure. To enable robotic
adaptation in such situations, the agent needs to adopt policies
which are robust to a diverse set of damages and must do so
with minimum computational complexity. We thus propose a
damage aware algorithm which diagnoses the damage prior
to gait selection while incorporating domain randomization in
the damage space for learning a robust policy. To implement
damage awareness, we have used a Long Short Term Memory
based supervised learning network which diagnoses the damage
and predicts the type of damage. The main novelty of this
approach is that only a single policy is trained to adapt against
a wide variety of damages and the diagnosis is done in a single
trial at damage time.

I. INTRODUCTION

Robotic devices were introduced with the motive of pro-
viding a safe method of access and operation in environments
that are hazardous and unreachable to humans. But very
often these environments destabilize or damage the robot
partially, often impairing them, leading to a mission failure or
significant drop in performance. This is especially critical for
robots deployed in manufacturing industries and warehouses
[1], search and rescue missions [2] and disaster response
[3]. Although this situation of partial damage is tackled in
humans or animals by their learning of alternate ways to
perform the action, this kind of learning in robots requires,
what we call, intelligence. Hence the objective while design-
ing robotic devices is not restricted to avoiding or tackling
obstacles, it also includes the adaptation of the agent in
presence of adversaries, both in the form of internal damages
as well as external effects.

Deep Reinforcement learning (Deep RL) has been shown
to be effective in modeling such navigation problems because
of its online learning capability in high dimensional search
spaces [4], [5], [6], [7]. But the environments and agents
both are complex in nature as a result of which, retraining
the RL policy every time a change occurs in either of them
is highly impractical. This points to the necessity of having
a single robust policy which can help the agent adapt in
varying adversarial conditions.

To remove the bottleneck of single policy, several ap-
proaches have tried to learn multiple policies and then

*This work was not supported by any funding organization
The authors are with the Department of Information Technol-

ogy, Indian Institute of Information Technology and Management,
Gwalior, India. (e-mail:ipg 2015095@iiitm.ac.in; ipg 2015035@iiitm.ac.in;
jdhar.iiitmg@gmail.com).

choosing from them at the time of damage. However, models
which have made progress in this domain require reset of
the agent to initial state [8], or multiple hardware trials to
be performed to help the agent recover or adapt [8], [9],
[10]. Although this is intuitive, it is inefficient considering
the overhead. To make a smart decision, rather than choosing
from a set of high performing gaits, the agent will need to
understand the damage prior to adaptation.

We propose Damage Aware-Proximal Policy Optimization
(DA-PPO), combining damage diagnosis with deep rein-
forcement learning. The algorithm performs damage diag-
nosis on multiple damage cases using a Long Short Term
Memory (LSTM) [11], based supervised learning network,
which uses the difference between the gaits of a healthy
and a damaged robot as input and classifies the damage that
has occurred if any. The diagnosed damage data is collected
along with the current observation vector to create a modified
observation space, which contains information of both state
space observation as well as damage. This data is used to
train our RL model, which is optimized using Proximal
Policy Optimization (PPO) [12]. The trained model shall be
able to understand the damage that has occurred and choose
its gait accordingly. Since only a single policy is developed,
this reduces the overhead of storing and choosing between
multiple policies, making our algorithm effective in real time.

We intend to create an efficient control structure that can
tackle single and multiple internal damages in robotic agents
in real time. The major objectives of our work are:

1) To create a deep reinforcement learning based control
architecture for enabling robots to accomplish mission-
critical tasks even in presence of physical damages.

2) To optimize the control structure so that the robot
adapts its gait using a single hardware trial.

II. RELATED WORK

Early work on automated recovery in robots was based on
evolutionary algorithms and generally divided the process
into two phases-damage estimation and recovery. Based in
this idea, the algorithm introduced by Bongard et al. [9]
proposed a continuous information flow between a physical
robot and its simulation wherein the robot provides its current
state information to the simulator, which returns neural
controllers that are expected to handle its state or damage.

Rather than considering two separate phases for damage
diagnosis and recovery algorithm generation, Cully et al.
[8], proposed a method inspired from animals, who perform
trial and error to determine the least painful alternate gait
in presence of injury. The approach put forward, Intelligent

Trial and Error (ITE), relies on a behavior-performance
map space. This map enables the robot to try multiple
behaviors which are predicted to perform well. The algorithm
implements a Gaussian process, which uses current data
to approximate a performance function, and a Bayesian
optimization procedure, which uses this model to find the
maximum of the performance function. Based on the trials
conducted and their results, the estimated performance values
are also updated in the map. The process converges when the
best behavior possible has been estimated. This select-test-
update loop continues until the right behavior is obtained.

Inspired by ITE, Chatzilygeroudis et al. [4], proposed a
more optimized version of the algorithm. Similar to ITE,
Reset free Trial and Error (RTE) pre-computes and generates
a behavior performance map using MAP-ELITES [13]. It
learns the robots model, especially when it is damaged and
uses Monte Carlo Tree Search [14], to compute the next
best action for the current state of the robot. Also, the
method uses a probabilistic model to incorporate uncertainty
of predictions and uses this data to correct the outcome
of each action on the damaged robot. This culmination of
algorithms makes sure that there is no reset required when
damage occurs.

An approach was introduced by Kume et al. [15], using
multi-policy mapping for a single behavior, unlike previous
works where a single policy was used. Map-based Multi-
Policy Reinforcement Learning (MMPRL) trains many dif-
ferent policies by collaborating a behavior-performance map
and the concepts of deep reinforcement learning. It aims to
search and store these multiple policies while maximizing
expected reward. MMPRL saves all possible policies with
different behavioral features, making it extremely fast and
adaptable.

Some recent works have also experimented with ran-
domization in simulation environments through domain and
dynamics randomization [16], [17] so as to bridge the gap
between simulation and real world. The idea is to create
numerous variations in the simulation environment so that
real world appears as just another sample from a rich
distribution of training samples. In [16], the authors have
experimented on object localization for the purpose of grasp-
ing in cluttered environment. They have shown impressive
results randomizing in the visual domain to transfer learning
from simulation to real world without requiring real world
training images. On the other hand, in [17], the authors
have randomized the dynamics of the environment such as
mass,damping factor, friction coefficient and have shown that
the policy learned in such dynamic environment is quite
robust to calibration errors in the real world.

While most map-based methods are able adapt over a wide
range of damages, their computational overhead in creating
the behaviour-performance map is a significant drawback.
In ITE and RTE, the complexity is further increased by
the Gaussian process computations. Moreover, all these
approaches require multiple hardware trials for adapting
to a damage. We try to incorporate domain randomization
approach in the context of damages so that damages in the

real world are just another variation of training samples.
Moreover, we further improve this approach by adding a
single-hardware-trial control loop for diagnosing the damage
so that policy learning is aware of damage type.

III. APPROACH

A. Overview

We consider the following scenario: A robot has been
damaged while in a remote and hazardous environment. We
require the robot to reach the destination by adapting its
gait so as to overcome the damage. Rather than making the
agent dependent on a pre-computed set of high performing
gaits, it should be able to identify and adapt to its damage
autonomously.

Thus we propose a self-diagnose network which can pre-
dict the type of damage that has occurred in the structure of
the robot. With this damage awareness, we use an augmented
observation space for learning a well-performing policy
through a modified version of Proximal Policy Optimization
(PPO) which we call Damage Aware-Proximal Policy Opti-
mization (DA-PPO). In our work, we assume that internal
damages, unlike environmental adversaries, do not keep
changing constantly. Thus, we only need to perform the self-
diagnosis step for determining damage class whenever the
reward drastically drops below a certain threshold, indicating
that damage has occurred.

B. Self-diagnose network

Self-diagnose network is an LSTM [11] based predictive
model, which tries to classify the type of damage that
has occurred in the robot using continuous feedback from
its gait. In Automated Damage Diagnosis and Recovery
for Remote Robotics, Bongard et al. [9], have used the
difference between simulated robots behavior against the
physical robots behavior in terms of forward displacement in
order to classify damages. We extend this idea by measuring
the difference in sensor values between the two for a fixed
number of time steps. This results in a time series and our
problem is reduced to classifying damage from this data.
More specifically, the on-board computer of the robot can
run a simulation of a healthy robot and compare its gait
with the actual steps taken. Based on the difference between
the two, the network can diagnose the class of damage.

Algorithm 1 Sample collection
Result: An array with collected samples
Initialize:
Load an expert policy trained on healthy robot
Run parallel threads
for i← 0 to n rollouts do

Set a random seed
Initialize environments envd, envh for healthy and
damaged robots with same seed value
for damage class← 0 to n damage classes do
envd.applyDamage(damage class)

for n← 0 to n timesteps do
get action from predefined policy
ah = policy fn(obsh)
ad = policy fn(obsd)
do simulation step in both environments
obsd, rewd = envd.step(ad)
obsh, rewh = envh.step(ah)

end
collect (oh-od)

end
end
Concatenate collected samples

Since this time series is multivariate and high dimen-
sional, we use LSTM hidden units which are powerful and
increasingly popular models for learning from sequence data
[18]. The network is trained using data obtained through the
sample collection step explained in Algorithm 1. This step
is also parallelizable and thus doesn’t act as a bottleneck for
the entire algorithm. The network, represented by Θ, can be
accessed on demand to determine damage class µ within a
single trial as shown in Fig. 1.

C. Encoding of Damage Indicators

The self-diagnose network predicts the damage class of
the robot which can act as an additional state information
about the environment. We thus concatenate it with the
observation space of the original robot to form what we call
an augmented observation space.

This poses a necessity to encode the output of the classifier
so that the policy efficiently learns various gaits in accor-
dance with the damage. If a random encoding scheme is used
for creating the augmented observation space, it results in the
algorithm perceiving the encoding as noise, and completely
avoiding it during policy learning. We have thus used partial
one hot encoding and it is observed to work well in practice
as the damage information is not lost in training.

In our experiments, we have limited the number of dam-
ages that can occur simultaneously to two and have taken the
assumption that only one damage can occur on a limb at a
time. The number of damage classes can thus be calculated as
sum of zero damage case, single damage cases and multiple
damages cases occurring at various limbs. This is given by:

D = k0
(
n

0

)
+ k1

(
n

1

)
+ k2

(
n

2

)
, (1)

where n represents the number of limbs in the agent and k
represents the number of different damage types considered.

The encoded vector is of length 2n where the damage
of ith limb is represented by the values at indices 2i and
2i + 1 in the encoded vector. Thus, we have a tuple of
size 2 associated with each limb where [0, 0] represents no
damage, [1, 0] represents damage type 1 and [0, 1] represents
damage type 2 at the limb. Note that [1, 1] can be used if
we remove the assumption that two types of damages can’t
occur together at a single limb. Furthermore, the tuple size
can be increased to model more types of damages.

Fig. 1: Control Architecture

D. Proximal Policy Optimization

Since our task is that of continuous action control, we
formulate it as a reinforcement learning problem, starting
from initial state s0, choosing a series of action a ∈ A
and obtaining state si and reward ri at the ith timestep
while maximizing the expected sum of rewards by changing
the parameter θ of the stochastic policy πθ. But the use
of large scale optimization is less widespread in continuous
action spaces. An attractive option for such problems is to
use policy gradient algorithms [19]. PPO improves standard
policy gradient methods by including a clipped surrogate
objective function. It is an improvement over Trust Region
Policy Optimization [20], so as to enable the running of
multiple epochs on collected data.

PPO represents the ratio between new policy and old

policy as:

rt(θ) =
πθ(at|st)
πθold(at|st)

. (2)

The objective function [12]:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1−ε, 1+ε)Ât)], (3)

is a clipped objective which stabilizes training by con-
straining the policy changes at each step. This clipping
approximates the gradient to a local value so that large steps
are not taken between iterations, enabling multiple epoch
training on collected samples. We use PPO to train our policy
for learning continuous control tasks.

E. Damage Aware Proximal Policy Optimization

With the self-diagnose network in place, we can now
use the policy learning algorithm on augmented observation
space which encapsulates both environment state (through
observation vector) and damage awareness (through damage
encoding vector). We use the PPO algorithm for policy
learning from the augmented observation space where xt is
the observation at timestep t, u is the action taken according
to policy Π and fµ is the environment in which damage
µ has occurred (see Fig. 1). Note that we only run self
diagnose network when reward during a run falls below a
certain threshold. At other times, the damage is considered
to be the same as diagnosed in the last run.

IV. EXPERIMENTAL SETUP

A. Simulation Setup

To evaluate our approach, we have conducted experiments
on two environments, Ant, a quadrupedal locomotive robot
and Hexapod, a six-legged locomotory robot. We have used
OpenAI gym toolkit [21], for performing simulations in
combination with MuJoCo physics engine [22]. The Ant is an
already implemented environment in OpenAI Gym while the
Hexapod is implemented using the configuration and model
described in ITE [8].

The two environments used in our experiments are
discussed below:

Ant (Quadrupedal bot): Ant is a simple quadrupedal
robot with 12 degrees of freedom (DoF) and 8 torque
actuated joints. The joint has maximum flex and extension of
30 degrees for both from their original setting and also has
a force and torque sensor. The observation includes features
containing joint angles, angular velocity, the position with
respect to the center of mass and force and torque sensor of
each joint forming 111-dimension vector. The target action
values are the motor torque values which are limited to the
range -1.0 to 1.0. We limit an episode to at most 1000
timesteps and the episode will end whenever it crosses this
limit or robot falls down on its legs or jumps above a certain
height. The reward function is defined as follows:

Rt = ∆xt + st − w0Ct − (w1||φt||2)2, (4)

where ∆xt is the covered distance of the robot in the
current time step since the previous time step, st is the

survival reward, which is 1 on survival and 0 if the
episode is terminated by the aforementioned conditions. The
variable Ct is the number of legs making contact with the
ground, φt ∈ R8 are the target joint angles (the actions), and
wn is the weight of each component with w0 = 0.5, w1 = 0.5.

Hexapod: There are three actuators on each leg of the
Hexapod. In the neutral position, the height of the robot
is 0.2 meters. In addition to this, the actions are taken to
be the joint angle positions of all 18 joints, which ranges
from -0.785 to 0.785 radians. As the observation space of
the agent, a 53-dimension vector is given as input which
consists of the position and velocity of all the joints as well
as he center of mass. Along with this, the observation space
contains booleans of touch sensors which indicate whether
a leg is making contact with the ground or not. Again, we
limit an episode to be at most 1000 timesteps and the episode
will end whenever the robot falls down on its legs or jumps
above a certain height or crosses the time limit.

The reward function R is defined as follows:

Rt = ∆xt + st − w0Ct − (w1||τt||2)2 − (w2||φt||2)2, (5)

where ∆xt is the covered distance of the robot in the current
time step since the previous time step, st is the survival
reward, which is 0.1 on survival and 0 if the episode is
terminated by the aforementioned conditions. The variable
Ct represents the number of legs making contact with the
ground, τt ∈ R18 is the vector of squared sum of external
forces and torques on each joint, φt ∈ R18 are the target joint
angles (the actions), and wn is the weight of each component
with w0 = 0.03, w1 = 0.0005, and w2 = 0.05.

B. Damage Simulation

Since both the environments considered in our experiments
are simulated in OpenAI gym, the damages are implemented
by modifying the xml files of the 3D model. This can be done
on the fly without affecting parallelly running experiments.
In our work, we have simulated broadly two kinds of internal
damages which are:

1) Jamming of joint such that it can’t move irrespective
of the amount of torsional force applied by the motor
at that joint.

2) Missing toe, i.e., lower limb of the robot breaks off.
In both Ant and Hexapod, jamming of joint is modeled

by restricting the angle range of the concerned joint to -0.1
to 0.1 degrees from default values of -30 to 30 degrees and
-45 to 45 degrees respectively in the two environments.

Missing toe is modeled by reducing the lower limb size
to 0.01 from the original values of 0.8 and 0.07 in the two
environments. Note that in Hexapod, there are touch sensors
on each of the lower limbs, so, whenever that limb breaks
off, we consider that the touch sensor for that limb stops
giving any signal and it is considered to output 0.

V. RESULTS AND DISCUSSION

We evaluate the performance of our approach within
the two elements involved : (1) Self-Diagnose network for

(a) Ant damage scenario 1 (b) Ant damage scenario 2

(c) Hexapod damage scenario 1 (d) Hexapod damage scenario 2

Fig. 2: Some of the damage scenarios in Ant and Hexapod. Yellow and red circles
represent jammed joint and missing limb damage types respectively.

predicting class of damage (2) DA-PPO, which learns to
adopt a policy given that a particular damage has occurred.

A. Self-diagnose network

For the comparison of performance, we consider different
number of rollouts (amount of data to train on), length
of history to look back into (timesteps) and what to give
as observation data, i.e., our proposed approach of using
difference of observations between healthy and damaged
run or plain observations of only damaged run. Table I
summarizes the validation accuracy for these modifiable
parameters. We can observe that classifying using fewer
timesteps results in faster diagnosis but at the expense
of accuracy. Moreover, classification using the difference
between observation vectors as input outperforms the use
of plain damaged observations in most of the cases. If there
is a constraint on computation power of on-board computer
of the robot then former can be preferred over the latter one.

As for the network structure, we have used an LSTM
embedding layer with embedding size 512 as our first hidden
layer. It is followed by three dense layers of size 256, 128,
64 along with dropouts, so as to reduce overfitting. The
output layer uses softmax as activation so that it outputs
class probabilities. The loss function and optimizer used are
categorical crossentropy and adam respectively. For Ant and
Hexapod environments, the possible classes range from 0 to
32 and 0 to 72 respectively as calculated from equation 1.

B. Damage Aware-Proximal Policy Optimization

We start by comparing the performance of PPO policy
which is trained on damage classes but without augmented
observation space (i.e., without explicit knowledge of dam-
age class), aka PPO-Unaware and Damage Aware PPO
policy aka DA-PPO. The performance metric used is the
forward reward of the agent. Fig. 4 shows the training curve
comparison between PPO-Unaware and DA-PPO in Ant (See
Fig. 4a) and Hexapod (See Fig. 4b) environments. It shows

TABLE I: Classification accuracy in predicting damage class in Ant and Hexapod
environment with varying number of timesteps and rollouts. Method A represents
using plain observations as time series and method B represents using difference of
observations between healthy robot and damaged robot as time series.

Classification Accuracy in Ant Environment

Timesteps Method Number of Rollouts
1000 2000 7000

10 A 78.2±1.11 81.4±0.6 82.4±0.87
B 81.24±2.88 85.2±1.2 84.33±0.72

30 A 82.17±1.7 87.1±1.8 88.17±1.3
B 83.62±2.03 90.8±0.9 91.5±1.067

50 A 83.11±0.8 90.17±1.2 92.83±1.8
B 84.29±1.21 92.6±1.83 96.8±1.48

Classification Accuracy in Hexapod Environment

Timesteps Method Number of Rollouts
1000 2000 7000

10 A 22.2±0.6 33.1±1.23 44.6±0.9
B 32.6±0.8 38.5±1.1 47.8±1.13

30 A 60.5±1.9 62.9±1.8 79.67±1.02
B 65.45±1.2 69.17±1.11 82.6±1.28

50 A 65.23±1.3 69.7±1.1 82.2±1.8
B 68.83±1.8 72.17±1.29 87.6±0.86

that average forward reward is consistently better in DA-PPO
than PPO-Unaware.

For the Hexapod environment, we also use the concept of
curriculum learning [23], by progressively training on cases
which are more difficult. We implement this by increasing the
percentage of damage classes in training examples and also
progressively increasing the severity of damages (include
multiple damages). In this way, we were able to encourage
rapid learning progress.

We also do a per class performance analysis of the two
approaches discussed across various damage classes in both
Ant and Hexapod (See Fig. 3, 5). In the Ant environment,
DA-PPO performs better in 82.84% of damage classes when
compared to PPO-Unaware. Comparing between various
damage classes, DA-PPO is seen to adapt really well when
multiple damages occur on adjacent limbs, rather than when
damage occurs on opposite limbs - which is a rarer case.
In the Hexapod environment, DA-PPO performs better in
82.84% of damage classes when compared to PPO-Unaware
(See Fig. 3).

VI. CONCLUSIONS

We have proposed and implemented a two-part algorithm
for robotic damage adaptation. This is particularly useful
when expensive robots are used in hazardous environments,
where human intervention is nearly impossible.

Our algorithm enables the agent to autonomously identify
and understand any damage that occurs to its physical
structure and adapt its gait accordingly. Since the ultimate
goal is the creation of intelligent machines, understanding
the damage is as important as adapting from it, which has
often been overlooked in previous literature.

On comparison with map-based approaches, DA-PPO
doesn’t require any pre-computation and thus the compu-
tation time is relatively much less. This is also enhanced by
the fact that the algorithm adapts to the damage in a single
trial itself, without trying multiple well-performing gaits or

Fig. 3: Forward reward comparison between DA-PPO and PPO-Unaware across different damage classes in Hexapod

(a) Training curve of Ant (b) Training curve of Hexapod

Fig. 4: Average reward comparison between DA-PPO and PPO-Unaware in Ant and
Hexapod. In Hexapod, each piece-wise curve represents a stage (I, II, II or IV)Iin the
curriculum learning process. I has 100% healthy cases, II has 60% healthy and 40%
single damage cases, III has 70% healthy and single damage and 30% multiple damage
cases and IV has all damages equally likely.

without having to be reset to the initial state to perform the
trial.

The approach can be easily scaled to a larger number of
damage classes too. Since no differentiation is made between
the cause of damage, adaptation is possible in case of both
morphological and external damages. Also, in the case of
unknown damages, the network is expected to predict a
damage class which resembles the actual damage the most
and try to choose a gait accordingly. This implies a very low
rate of complete failure.

Future work shall be focused on extending the algorithm
to handle environmental adversaries, which is much desir-
able since real-world environments are not predictable. We
also intend to work on DA-PPO for complex and dynamic
environments, using SLAM [24]. Finally, we plan to extend
our method and prove its effectiveness by applying it on a
physical robot.

REFERENCES

[1] B. S. O. Khatib, Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

[2] R. R. Murphy, “Trial by fire [rescue robots],” IEEE Robotics Automa-
tion Magazine, vol. 11, no. 3, pp. 50–61, Sep. 2004.

Fig. 5: Forward reward Comparison between PPO-Unaware and DA-PPO across
different grouped damage classes in Ant. D1 and D2 refers to single jammed joint
and single missing toe damages. Dij A and O represents that damage type i and j
are present in adjacent (A) or opposite (O) limbs.

[3] K. Nagatani, S. Kiribayashi, Y. Okada, K. Otake, K. Yoshida,
S. Tadokoro, T. Nishimura, T. Yoshida, E. Koyanagi, M. Fukushima,
and S. Kawatsuma, “Emergency response to the nuclear accident
at the fukushima daiichi nuclear power plants using mobile rescue
robots,” J. Field Robot., vol. 30, no. 1, pp. 44–63, Jan. 2013.
[Online]. Available: http://dx.doi.org/10.1002/rob.21439

[4] K. Chatzilygeroudis, V. Vassiliades, and J.-B. Mouret, “Reset-free
trial-and-error learning for robot damage recovery,” Robotics and Au-
tonomous Systems, vol. 100, pp. 236 – 250, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0921889017302440

[5] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2096–2103, Oct 2017.

[6] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust
adversarial reinforcement learning,” ICML, 2017. [Online]. Available:
https://arxiv.org/abs/1703.02702

[7] K. Lobos-Tsunekawa, F. Leiva, and J. Ruiz-del-Solar, “Visual navi-
gation for biped humanoid robots using deep reinforcement learning,”
IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3247–3254,
Oct 2018.

[8] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, May
2015. [Online]. Available: http://dx.doi.org/10.1038/nature14422

[9] J. C. Bongard and H. Lipson, “Automated damage diagnosis and
recovery for remote robotics,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 4,
April 2004, pp. 3545–3550 Vol.4.

[10] S. Koos, A. Cully, and J.-B. Mouret, “Fast damage recovery in
robotics with the t-resilience algorithm,” The International Journal of
Robotics Research, vol. 32, no. 14, pp. 1700–1723, 2013. [Online].
Available: https://doi.org/10.1177/0278364913499192

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online].
Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[12] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 07 2017.

[13] J. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” CoRR, vol. abs/1504.04909, 2015. [Online]. Available:
http://arxiv.org/abs/1504.04909

[14] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree
search: A new framework for game ai.” 01 2008.

[15] A. Kume, E. Matsumoto, K. Takahashi, W. Ko, and J. Tan, “Map-
based multi-policy reinforcement learning: Enhancing adaptability of
robots by deep reinforcement learning,” CoRR, vol. abs/1710.06117,
2017. [Online]. Available: http://arxiv.org/abs/1710.06117

[16] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
23–30.

[17] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Sim-to-real transfer of robotic control with dynamics
randomization,” CoRR, vol. abs/1710.06537, 2017. [Online].
Available: http://arxiv.org/abs/1710.06537

[18] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and
J. Schmidhuber, “Lstm: A search space odyssey,” IEEE transactions
on neural networks and learning systems, vol. 28, no. 10, pp. 2222–
2232, 2017.

[19] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra,
and M. Riedmiller, “Deterministic policy gradient algorithms,”

in Proceedings of the 31st International Conference on
International Conference on Machine Learning - Volume 32, ser.
ICML’14. JMLR.org, 2014, pp. I–387–I–395. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3044805.3044850

[20] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07–09 Jul 2015, pp. 1889–1897. [Online]. Available:
http://proceedings.mlr.press/v37/schulman15.html

[21] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” CoRR, vol. abs/1606.01540,
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[22] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5026–5033, 2012.

[23] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International
Conference on Machine Learning, ser. ICML ’09. New
York, NY, USA: ACM, 2009, pp. 41–48. [Online]. Available:
http://doi.acm.org/10.1145/1553374.1553380

[24] H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and
mapping (slam): Part i the essential algorithms,” IEEE Robotics and
Automation Magazine, vol. 2, p. 2006, 2006.

