
A Physics-enabled Simulation Environment for Solution of O3D-BPP
using Feedback-Driven DRL Technique

Aditya Jain1, Aniruddha Singhal2 and Richa Verma3

Abstract— In this paper, we propose a robotic solution to the
problem of container loading in warehouses and distribution
centers. The container loading problem is modeled as an Online
3D Bin Packing Problem (O3D-BPP), where the information
about future sequences of the objects to be packed is not known
apriori unlike the offline problem which necessitates aprior
knowledge. We propose a novel DQN-based deep reinforcement
learning (DRL) approach to solve the O3D-BPP. We have
developed a physics-enabled PyBullet simulation environment
of a warehouse sorting center in which a reinforcement learning
agent is trained and tested to optimally solve the O3D-BPP on a
custom dataset with known baseline efficiency. The simulation
environment is able to mimic real-life scenarios like toppling,
gaps in packing and orientation changes. This work will abridge
the gap between simulation and real-world scenario and the
trained algorithm will be easily deployed in a real-world system.
We aim to deploy the model learnt in the simulation on a
prototype of the robotic sorting centre created in our lab.

I. INTRODUCTION

In a typical Distribution Center (DC), the internal trans-
portation of goods and parcels is majority of the work.
The work of internal transportation comprises of recognition
of type of goods, tight packing of goods in containers
and optimal path planning of the vehicles carrying these
containers. In this paper we will discuss the solution to the
problem of tightly packing goods inside a container. It is
mathematically equivalent to Three Dimensional Bin Packing
Problem (3D-BPP) which is also a well known problem in
computer science. It is a NP-hard problem and therefore
it has no known optimal solution. A more difficult variant
of the problem is called Online 3D-BPP (O3D-BPP) where
the information about the boxes to be packed is not known
in advance. The best known solutions to O3D-BPP uses a
greedy approach and performs only marginally better than
simple greedy approaches like first fit, next fit and worst fit.

The difficulty of O3D-BPP is dependent upon the hetero-
geneity of the boxes to be packed, the number of containers
available for packing, allowed orientations of boxes, weight
restrictions and stability constraints. A scenario with less
heterogeneity and more constraints is easier to solve because
the possible positions for placement of boxes is limited
and therefore a partially exhaustive search becomes feasible.
Another challenge associated with on-line problems like
O3D-BPP is unavailability of a ground truth for comparison
and requires some work to generate base line cases so that
meaningful comparisons can be made.

The authors work at TCS Innovation Labs, New Delhi - India
1jain.adi, 2aniruddha.singhal, 3richa.verma -
@tcs.com

Fig. 1: The figure illustrates online 3D bin packing problem
for a distribution center where parcels are coming on the
conveyor belt and a robotic arm is packing the parcels in a
container. The incoming stream of parcels have a limited
visibility of at-most k parcels at a time and the robotic
system takes real-time placement decision based on the
visible sequence of parcels and training experience.

In this paper we propose a robotic solution to pick and
pack heterogeneous sized boxes in containers for a ware-
house or a DC. The tight packing of boxes in a container is
both a algorithmic as well as an implementation challenge.
A robotic packing system has several challenges associated
with physical placement of a box. When a box is placed
inside a container, the errors associated with toppling of box,
imprecise placement, unstable placement etc. accumulate,
because of which the expected position of placement and
the actual position of placement of the box are different.
In the problem of O3D-BPP it is essential that the actual
state of the container and the expected state of the container
updated by the algorithm should be identical. A mismatch
in these states can lead to a suboptimal packing plan which
will either effect efficiency of the packing or will cause a
collision of boxes and container with the robotic arm.

Therefore, to solve the problem of robot packability and
O3D-BPP, we propose a physics enabled open AI gym
environment to mimic real-life bin packing problem which
accounts the difference between the actual and observed state
of the container. We also explore a novel Deep Q-Network
(DQN) -based Deep Reinforcement Learning (DRL) method
to solve O3D-BPP in such an environment.

II. RELATED WORK

Offline Bin Packing Problem (both 2D and 3D) has been
studied widely from a theoretical perspective. O3D-BPP has
been surveyed from a warehouse point of view in a parcel
loading context and has been formulated as a knapsack
problem [1]. A more detailed study of nD-BPP is done in [2]
with comparisons of different algorithms in the literature.



Fig. 2: The figure illustrates entire pipleline of the proposed
system

Most of the existing online methods focus on finding the
theoretical bounds for approximate or heuristic methods for
online bin packing [3] [4] [5]. The above heuristic methods
are known to have poor generalization leading to very limited
practical applications. Recent advancements in DRL have
shown promising results in solving various combinatorial
problems [6] [7]. This has encouraged people to use DRL for
solving bin packing problems [8] [9], but mostly restricting
them to the offline version. Thus the DRL framework has not
been explored exhaustively and hence, lays the foundation
for this work.

Robot packable solution for 3D bin packing problem have
been discussed in [10], [5], [11], [12]. Recently [13] dis-
cussed packing strategy of known items arriving in random
order.

A. RL approach to Combinatorial Problems

Heuristic algorithms are built specifically for a given
problem and hence cannot be used for a general purpose
problem. This challenge can be overcome by the use of
reinforcement learning techniques because of their high
adaptability. DRL techniques have shown promising results
in large state spaces [14], as well as large or continuous
action spaces [15]. Recent developments in DRL, have shown
to perform equally well or better than heuristic algorithms
in their respective problem areas and in some cases, even
their human counterparts too, AlphaGo [16]. A value-based
RL algorithm called TD(λ), which uses temporal difference
between the q-values to update the policy of the agent, has
been used in [17] for Job-Shop Scheduling problem for
NASA payload processing task. Authors in [18] also propose
a Q-Learning (Q-Table) approach for Job-Shop Scheduling
problem by selecting proper state variables and implementing
2-step scheduling rules and epsilon-greedy strategy for action
selection.

B. Closed Loop and Transfer Learning to Real Systems

Singh et al. [19] used a similar method to learn optimal
policies using reinforcement learning techniques by directly
training from raw sensory inputs, such as camera images. The

Fig. 3: This figure shows the setup of the depth camera along
with the container. The camera captures depth images from
a bird’s-eye view. The field-of-view (FOV) is larger than the
container and so the depth image is cropped before training.
The blind zone area area varies inversely with the camera
height

authors first trained the agent in a simulation set up and then
trained on real-robotic system to perform tasks like pushing,
cloth draping and book keeping on the shelf. However, it
requires goal examples apriori to train a classifier and also
manual labeling during real-world interaction.

III. ROBOTIC SOLUTION TO O3D-BPP

The proposed solution has a robotic assembly as shown
in Fig. 1 and Fig 3. It has a robotic arm and a depth camera
to estimate the pose of the incoming box for picking. The
packing decision is made by an RL agent based on the feed
of the depth camera. The RL agent has learned the optimal
way of packing by experimenting with millions of boxes in a
realistic physics enabled simulation environment. In section
IV we explain how this simulation environment is created
and in section V we discuss how the agent is trained in this
environment.

IV. SIMULATION ENVIRONMENT

For the purpose of training and testing the RL agent, we
created two simulation environments. The first one is a static
environment built on structured 2D array. This environment
ensures non-overlapping of boxes, stable placement and
robot packibility, but cannot mimic real-environment un-
certainties like toppling, imprecise and unstable placement.
The second environment is a physics-enabled Open AI Gym
environment developed in PyBullet [20]. The pybullet envi-
ronment exactly replicates the real world and takes account
of all the uncertainties mentioned above. In such an envi-
ronment, the RL agent can be better trained to pack boxes
in a real world and can also learn certain hacks of packing
which are possible only in a physics enabled environment.
Following subsections contains details of implementation of
each environment:



Fig. 4: A box being placed in a structured array env.

A. Structured array environment

The structured array-based environment consist of 2D
array of dimensions L ∈ N and B ∈ N representing a
container in which boxes are to be packed. There can be
n such containers and therefore n 2D arrays representing
those containers. The height of the container is the maximum
value allowed at any location (x, y) such that 0 < x ≤ L
and 0 < y ≤ B. The non-overlap of boxes is modeled by
consideration of space availability for the placement of a
new box. A rectangular grid is overlayed on the point of
placement of the box and the values in the rectangular grid
are checked. If the all are equal and the height of the box does
not protrude the container, then the box is placed, otherwise
another placement location is sought. A visualization of 2D
array for one empty container and a box is shown in Fig 4.

B. Physics-enabled OpenAI Gym environment

The Physics-enabled OpenAI Gym environment is created
in PyBullet (Fig. 5). In contrast to structured array environ-
ment, the physics enabled pybullet environment can simulate
real world properties. The PyBullet simulation environment
is compatible with OpenAI Gym framework for ease of
testing with different libraries like Tensorflow, PyTorch,
Theano etc.

Fig. 5: PyBullet Simulation: Boxes of varied dimensions
being packed in a green container

(a) RGB Image (b) Depth Map

Fig. 6: Top view of the container. As evident, the physics-
enabled simulation takes into account the toppling, gaps
while packing and orientation changes.

The environment consist of containers with boxes placed
inside them and depth cameras viewing each container from
the top (Fig. 3). When the environment is asked to return
the current state, the depth camera takes snapshot of the
container and returns it to the algorithm for decision making
of box placement (Fig. 6). The environment is capable of
simulating gravity, friction, toppling, slips etc. making it
perfect replica of real world. The richness of environment
helps in training of a robust decision making agent.

A practical challenge with the simulation environment is
that the view of camera can be hindered by the placed boxes,
thereby creating blind zones where no box can be placed as
the place is not visible (Fig. 3).This problem was solved
by increasing the height of the camera upto an extent from
where the blind zones became insignificant.

One of the biggest advantages of this custom-built Py-
Bullet environment is that it helps to build a closed-loop
system. In real-world scenario, the box is not kept at the
intended location in the container due to inherent calibration
errors and thus there is always some offset in the placement.
In many situations, the box also topples due to larger box
weight than the box beneath. Thus the actual state space
becomes very different from what would have been believed
to be. If this is not taken into account in the algorithm, the
error will propagate with every step of box placement and
might lead to a crash of the entire robotic system.

V. DRL ALGORITHM

The solution of O3D-BPP is proposed using a combination
of heuristics and RL techniques. The following sections
presents the DRL network architecture, reward functions and
algorithm flow:

A. DRL Network Architecture

The neural network architecture used is shown in Fig.
7. The current state and the believed state is concatenated
before passing it through a max-pool layer. The vector is
then flattened. The first hidden layer contains 800 units, the
second layer has 400 hidden units and third has 200 hidden
units. The output of the network is a one dimensional scalar
which represents the Q-value estimate.

B. Choosing placement location

The placement location will be any point in a m × n
grid. Initially, we were processing all the points in a matrix
for every action. However, this method was computationally

Fig. 7: The proposed DQN architecture



expensive and unrealistic, especially in the case of PyBullet
simulation, wherein the state space can be as large as
1000 × 1000 pixels. Hence, only the corner positions are
chosen as the potential points to keep incoming boxes. The
pointlist, starts with a [0, 0] or the top-left corner in its list.
As the boxes are packed in the container, the corner positions
of the added boxes are appended in the list.

C. Reward Function

At each time step t, the agent performs an action by
placing a box at one of the feasible locations and receives a
reward based on the below formulation:

rt = β1
vbox,t

Vcontainer
− β2

vhole,t
Vcontainer

+ β3stdt − β4gradientt

where βi are the constant scalars. The first term in (1)
is proportional to the volume of the box placed in the
container while the second takes into account holes/vacant
spaces created by keeping the box, if any. It has been
seen that level packing (as humans do) ensures greater
packing efficiency and stability. Thus, the third term is
proportional to the standard deviation of the state space:
stdt = 1

(standard−deviation(statespace)) , lower the standard
deviation (i.e. more leveled the height is), the greater the
reward is. The fourth term checks the gradient along the
four sides of the newly added box. If the added box does
create a new height, the gradient will be higher and thus, a
lower net reward.

A terminal reward is also computed to check the perfor-
mance of the agent during the entire episode.

T =
Vpacked
Vcontainer

where Vpacked is volume of the boxes packed in the
container and Vcontainer is the volume of the container itself.
This terminal reward is back-propagated through all the steps
in the episode with a discount factor ρ = 0.99 before insertion
into the replay buffer.

VI. TRANSFER LEARNING TO LAB PROTOTYPE

A prototype of sorting centre was developed in the lab
using a UR10 robot. The system consists of a conveyor belt
on which parcels of different dimensions come in a stream.
The parcels are ordered and singulated using a different
module of the system which is out of scope of this study. The
singulated parcel is picked up by the robotic arm and place
inside the container. We aim to fine-tune the model learnt
in the simulation by doing few trial runs and ultimately, test
the efficacy of the model by placing heterogenous box sizes
in the containers.

VII. FUTURE WORK

We have tested the above mentioned DQN algorithm in the
matrix-based environment whose results are shown in Fig. 8.
We aim to test the same in the PyBullet environment after
incorporating more capabilities in the simulation system.
We are also working on adding complexities in neural net

Algorithm 1 Deep Q-learning for Container Packing
1: Initialize replay memory M to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1, E do
4: for file = 1, F do
5: Reset the container state s
6: cornerlist = [0, 0]
7: for t = 1, T do
8: Read the incoming box dimensions
9: Possible placement locations (actions) will be

in cornerlist
10: With probability ε select a random action

(location) at
11: else select at = maxaQ

∗(φ(st), a; θ)
12: Execute action at in environment and observe

reward rt and state st+1

13: Update cornerlist with the box corners
14: Store transition (st, rt, st+1) in M
15: Backpropagate terminal reward T through all the

steps in the episode
16: Sample random minibatch of transitions

(sj , rj , sj+1) from M

17: Set yj =

 rj for terminal sj+1

rj + γmaxa′ Q(sj+1, a
′; θ)

for non-terminal sj+1

18: Perform a gradient descent step on
(yj −Q(φj , aj ; θ))

2 according to equation ??

0 200 400 600 800

0

20

40

60

80

Training Episodes

F
ill
P
e
rc
e
n
ta
g
e

Fig. 8: The DRL agent learns to efficiently fill a container
in structured env. scenario

architecture by making it multi-input and multi-ouput, so
that it can extract better features from the input states. The
last leg of the project will include turning the lab prototype
of the robotic sorting centre into a closed-loop system, and
achieving packing efficiency of atleast 80%.

REFERENCES

[1] P. Kolhe and H. I. Christensen, “Planning in logistics: A survey,”
Georgia Institute of Technology, 2010.

[2] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, “Approximation
and online algorithms for multidimensional bin packing: A survey,”
Computer Science Review, vol. 24, pp. 63–79, 2017.



[3] S. S. Seiden, “On the online bin packing problem,” in International
Colloquium on Automata, Languages, and Programming, pp. 237–248,
Springer, 2001.

[4] L. Epstein, “On online bin packing with lib constraints,” Naval
Research Logistics (NRL), vol. 56, no. 8, pp. 780–786, 2009.

[5] F. Wang and K. Hauser, “Stable bin packing of non-convex 3D objects
with a robot manipulator,” arXiv preprint arXiv:1812.04093, 2018.

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” CoRR, vol. abs/1409.3215, 2014.

[7] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural com-
binatorial optimization with reinforcement learning,” arXiv preprint
arXiv:1611.09940, 2016.

[8] R. Jin, “Deep learning at alibaba.,” in IJCAI, pp. 11–16, 2017.
[9] H. Hu, X. Zhang, X. Yan, L. Wang, and Y. Xu, “Solving a new 3d bin

packing problem with deep reinforcement learning method,” CoRR,
vol. abs/1708.05930, 2017.

[10] D. Pisinger, S. Martello, D. Pisinger, D. Vigo, E. D. Boef, and
J. Korst, “Algorithm 864: General and robot-packable variants of
the three-dimensional bin packing problem,” ACM Transactions on
Mathematical Software (TOMS), vol. 33, no. 1, p. 7, 2007.

[11] E. D. Boef, J. Korst, S. Martello, D. Pisinger, D. Vigo, E. den Boef,
J. Korst, S. Martello, D. Pisinger, and D. Vigo, “A note on Robot-
packable and Orthogonal variants of the three-dimensional bin packing
problem,” in Diku-rapport 03/02, pp. 1–11, n, 2003.

[12] B. Mahvash, A. Awasthi, and S. Chauhan, “A column generation-
based heuristic for the three- dimensional bin packing problem with
rotation,” Journal of the Operational Research Society, 2017.

[13] F. Wang and K. Hauser, “Robot packing with known items and
nondeterministic arrival order,”

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[16] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap,
F. Hui, L. Sifre, G. v. d. Driessche, T. Graepel, and D. Hassabis,
“Mastering the game of go without human knowledge,” Nature,
vol. 550, p. 354, 10 2017.

[17] W. Zhang and T. G. Dietterich, “A reinforcement learning approach
to job-shop scheduling,” in Proceedings of the 14th International
Joint Conference on Artificial Intelligence - Volume 2, IJCAI’95, (San
Francisco, CA, USA), pp. 1114–1120, Morgan Kaufmann Publishers
Inc., 1995.

[18] Y. Wei and M. Zhao, “A reinforcement learning-based approach to
dynamic job-shop scheduling,” Acta Automatica Sinica, vol. 31, no. 5,
p. 765, 2005.

[19] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-
end robotic reinforcement learning without reward engineering,” arXiv
preprint arXiv:1904.07854, 2019.

[20] E. Coumans and Y. Bai, “Pybullet, a python module for physics simu-
lation for games, robotics and machine learning.” urlhttp://pybullet.org,
2016–2019.

[21] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-
scale machine learning on heterogeneous systems,” 2015. Software
available from tensorflow.org.


